Hospital Factors Associated With Discharge Bias in ICU Performance Measurement

Performance assessments based on in-hospital mortality for ICU patients can be affected by discharge practices such that differences in mortality may reflect variation in discharge patterns rather than quality of care. Time-specific mortality rates, such as 30-day mortality, are preferred but are harder to measure. The degree to which the difference between 30-day and in-hospital ICU mortality rates-or “discharge bias”-varies by hospital type is unknown. The aim of this study was to quantify variation in discharge bias across hospitals and determine the hospital characteristics associated with greater discharge bias.

Retrospective cohort study.

Nonfederal Pennsylvania hospital discharges in 2008.

Eligible patients were 18 years old or older and admitted to an ICU.


Measurements and Main Results:
We used logistic regression with hospital-level random effects to calculate hospital-specific risk-adjusted 30-day and in-hospital mortality rates. We then calculated discharge bias, defined as the difference between 30-day and in-hospital mortality rates, and used multivariable linear regression to compare discharge bias across hospital types. A total of 43,830 patients and 134 hospitals were included in the analysis. Mean (sd) risk-adjusted hospital-specific in-hospital and 30-day ICU mortality rates were 9.6% (1.3) and 12.7% (1.5), respectively. Hospital-specific discharge biases ranged from -1.3% to 6.6%. Discharge bias was smaller in large hospitals compared with small hospitals, making large hospitals appear comparatively worse from a benchmarking standpoint when using in-hospital mortality instead of 30-day mortality.

Discharge practices bias in-hospital ICU mortality measures in a way that disadvantages large hospitals. Accounting for discharge bias will prevent these hospitals from being unfairly disadvantaged in public reporting and pay-for-performance.