IVEware: Imputation and Variance Estimation Software
IVEware developed by the Researchers at the Survey Methodology Program, Survey Research Center, Institute for Social Research, University of Michigan performs:
 Single or multiple imputations of missing values using the Sequential Regression Imputation Method described in the article “A multivariate technique for multiply imputing missing values using a sequence of regression models” by Raghunathan, Lepkowski, Van Hoewyk and Solenberger.
 A variety of descriptive and model based analyses accounting for complex design features such as clustering, stratification and weighting.
 Multiple imputation analyses for both descriptive and modelbased survey statistics.
 Create partial or full synthetic data sets using the sequential regression approach to protect confidentiality and limit statistical disclosure.
 Combine information from multiple sources by vertically concatenating data sets and multiply imputing the missing portions to create a larger rectangular data set.
IVEware includes six modules: IMPUTE, DESCRIBE, REGRESS, SASMOD, SYNTHESIZE and COMBINE.

 IMPUTE uses a multivariate sequential regression approach for multiply imputing item missing values in a data set.
 DESCRIBE estimates the population means, proportions, subgroup differences, contrasts and linear combinations of means and proportions. For complex surveys, the Taylor Series approach is used to obtain variance estimates. The item missing values can be multiply imputed for the variables while perfoming the analysis.
 REGRESS fits linear, logistic, polytomous, Poisson, Tobit and proportional hazard regression models. The Jackknife Repeated Replication (JRR) approach is used to estimate the sampling variances for complex survey data. The item missing values may be multiply imputed while performing the regression analysis.
 SASMOD allows users to analyze data with several SAS procedures. Currently the following SAS PROCS can be called: CALIS, CATMOD, GENMOD, LIFEREG, MIXED, NLIN, PHREG, and PROBIT. The JRR approach is used for complex survey data and the missing values can be multiply imputed while performing these analyses.
 SYNTHESIZE uses multivariate sequential regression approach to create full or partial synthetic data sets to limit statistical disclosure (See Raghunathan, Reiter and Rubin (2003) , Reiter (2002) and Little,Liu and Raghunathan (2004) for more details.) All item missing values will also be imputed when creating synthetic data sets. However, DESCRIBE, REGRESS and SASMOD modules cannot be used to analyze synthetic data sets as they DO NOT implement the appropriate combining rules.
 COMBINE is useful for combining information from multiple sources through multiple imputation. Suppose that Data 1 provides variables X and Y, Data 2 provides variables X and Z and Data 3 provides variables Y and Z. COMBINE can be used to concatenate the three data sets and multiply impute the missing values of X, Y and Z to create large data sets with complete data on all three variables. All item missing values in the individual data sets will also be imputed. The multiply imputed combined data sets can be analyzed using DESCRIBE, REGRESS and SASMOD modules.
IVEware is available in several different versions targeting different operating systems and configurations:

SRCware
A standalone version of IVEware (that does not require SAS) that implements IMPUTE, DESCRIBE, REGRESS and SYNTHESIZE modules.

IVEwareRemote
A version of IVEware that can be used to analyze datasets remotely using a web brower interface. There are several requirements for installing this version of software such as security configuration and administration. For more information contact IVEware Support.
Version 0.1 Desktop IVEware (Requires SAS) and SRCware (Standalone) Download Documentation, Software, and Examples
Documentation
IVEware Version 0.1 User Guide 
SAS Installation Guide 
Srcware User Supplement 
Srcware Installation Guide 
Software
SAS version  Srcware version  

Microsoft Windows  ive_sas_windows.zip  ive_srcware_windows.zip 
PC Linux 32bit  ive_sas_pclinux32.tgz  ive_srcware_pclinux32.tgz 
PC Linux 64bit  ive_sas_pclinux64.tgz  ive_srcware_pclinux64.tgz 
Mac OS X 32bit  ive_srcware_macosx32.tgz  
Mac OS X 64bit  ive_srcware_macosx64.tgz 
Examples
SAS version  Srcware version  

Microsoft Windows  ive_sas_example.zip  ive_srcware_example.zip 
Linux / Mac OS X  ive_sas_example.tgz  ive_srcware_example.tgz 
Please report problems or send comments via email to IVEware Support: isriveware@umich.edu. For more detailed help, please complete and submit this Help Request form.